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The role of fluid motion in delivery of nutrients to phytoplankton cells is a
fundamental question in biological and chemical oceanography. In the study of
mass transfer to phytoplankton, diatoms are of particular interest. They are non-
motile, are often the most abundant components in aggregates and often form chains,
so they are the ones expected to benefit most from enhancement of nutrient flux due
to dissipating turbulence. Experimental data to test the contribution of advection to
nutrient acquisition by phytoplankton are scarce, mainly because of the inability to
visualize, record and thus imitate fluid motions in the vicinities of cells in natural
flows. Laboratory experiments have most often used steady Couette flows to simulate
the effects of turbulence on plankton. However, steady flow, producing spatially
uniform shear, fails to capture the diffusion of momentum and vorticity, the essence
of turbulence. Thus, numerical modelling plays an important role in the study of
effects of fluid motion on diffusive and advective nutrient fluxes. In this paper we use
the immersed boundary method to model the interaction of rigid and flexible diatom
chains with the surrounding fluid and nutrients. We examine this interaction in two
nutrient regimes, a uniform background concentration of nutrients, such as might
be typical of an early spring bloom, and a contrasting scenario in which nutrients
are supplied as small, randomly distributed pulses, as is more likely for oligotrophic
seas and summer conditions in coastal and boreal seas. We also vary the length and
flexibility of chains, as whether chains are straight or bent, rigid or flexible will affect
their behaviour in the flow and hence their nutrient fluxes. The results of numerical
experiments suggest that stiff chains consume more nutrients than solitary cells. Stiff
chains also experience larger nutrient fluxes compared to flexible chains, and the
nutrient uptake per cell increases with increasing stiffness of the chain, suggesting a
major advantage of silica frustules in diatoms.

1. Introduction
The role that fluid motion plays in the transport of solutes to and away from

micro-organisms suspended in oceans and lakes is a fundamental question in aquatic
ecology, first addressed quantitatively by Munk & Riley (1952). Of particular interest
is the transport of solutes to phytoplankton, the group of unicellular, photosynthetic
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Figure 1. Chains of Thallasiosira from the Gulf of Maine. Photo courtesy of David
Townsend, University of Maine.

micro-organisms that account for approximately 40 % of global annual primary
production and are the foundation of aquatic food webs. Phytoplankton require
dissolved nutrients (e.g. nitrate, phosphate, silicate, trace metals) for growth, and
therefore processes that affect rates of nutrient delivery to cells may ultimately
determine rates of primary production. Nutrients are delivered to the cell surface
by molecular diffusion and then transported across the cell membrane via an
enzymatically mediated uptake system.

A frequent misconception is that ambient flow can have no appreciable effect on
nutrient fluxes and chemical boundary layer geometries at low Reynolds numbers.
This misconception often arises from overzealous extrapolation of Purcell’s (see Purcell
1977) classic assessment of ‘Life at Low Reynolds Number’ without sufficient attention
to the fact that his focus was squarely on bacteria approximately 1 μm in diameter.
Various approaches since the seminal assessment of Munk & Riley (1952), however,
have indicated that when phytoplankton cells exceed a few tens of micrometres in
radius, ambient fluid motion, as well as sinking and swimming, can enhance fluxes of
solutes to or from cells (reviewed by Karp-Boss, Boss & Jumars 1996). Phytoplankton
exhibit a wide range of cell, chain and colony sizes, from <5 μm to a few millimetres
in length. At the upper end of these scales, ambient fluid motion, associated with
dissipating turbulence, can enhance net diffusive fluxes by thinning diffusive chemical
boundary layers that form around cells as a result of uptake (raise the Sherwood
number). For simple shear flows and shapes, the extent of enhancement can be
quantified through semi-empirical Péclet–Sherwood number relationships (Karp-Boss
et al. 1996). In related low-Reynolds-number settings, Short et al. (2006) and Solari
et al. (2006) demonstrated that flagellar stirring of boundary layers enhances nutrient
uptake in colonies of volvocalean green algae.

Phytoplankton species for which ambient fluid motion can potentially become
significant belong predominantly to the group of diatoms. This important group
accounts for approximately half of total annual global phytoplankton production,
and its members form intense spring blooms in coastal, temperate and high-latitude
environments. Diatoms exhibit striking diversity of cell morphologies, and although
unicellular, many species form chains and colonies (figure 1). A characteristic feature
of diatom cells is encasement in a silica shell (called a frustule), with a consequent
requirement for dissolved silicate, in addition to other nutrients.

It has been suggested that because phytoplankton are typically smaller than the
Kolmogorov length scale in the ocean, the flow they experience is a linear shear flow
(Lazier & Mann 1989). Thus, effects of turbulence on diatoms and other taxonomic
groups of plankton have most often been simulated in steady Couette flows, with
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various schemes for equating the steady shear produced with particular levels of
turbulent dissipation (e.g. Shimeta, Jumars & Lessard 1995). In a steady Couette flow,
phytoplankton cells that are elongate tend to align in the flow with their long axes
parallel to the flow and tumble periodically (Jeffery 1922; Karp-Boss & Jumars 1998).
Relative flow experienced by the cell during the tumble accounts for much of the flux
enhancement in nutrient supply experienced by cells in a steady shear flow (Pahlow,
Riebesell & Wolf-Gladrow 1997).

Steady flow, however, fails to capture the essence of turbulence. In steady Couette
flow, there is no net diffusion of vorticity because it is spatially uniform with respect
to shear. In decaying turbulence at the scales of phytoplankton there are gradients
and therefore net diffusion of both momentum and vorticity, suggesting that tumbles
may be much more prevalent, resulting in a more random distribution of orientations
than seen in Couette flow (Jumars et al. 2009).

Numerical modelling has already played a significant role in understanding the
role of relative fluid and particle motion in accounting for flux enhancement in
nutrient uptake, specifically by identifying tumbling events as times of enhancement
(Pahlow et al. 1997). Here we use a computational fluid dynamics approach to
take three distinct steps towards greater realism in modelling of nutrient uptake by
phytoplankton. First, we implement an unsteady shear flow to capture effects of
unsteadiness. Second, we explicitly include flexural stiffness as a variable because
phytoplankton form chains that vary in stiffness. Flexibility may enhance relative
motion between cells and fluid when a chain that is flexed by fluid forces rebounds
to its original shape. Third, we include two scenarios of nutrient distribution. For
comparison with the bulk of past work, we include an initially uniform background
concentration (that may be typical of high-nutrient conditions early in a spring
bloom). We also simulate nutrient supply in more oligotrophic (chronically nutrient-
poor) regions by providing randomly distributed point sources of nutrients (cf.
Blackburn, Azam & Hagstrom 1997).

The actual dynamical system consisting of fluid, suspended phytoplankton
chains and nutrient is obviously three-dimensional, as are the basic modelling
equations described below. In order to calculate long-time temporal dynamics while
varying parameters such as chain stiffnesses and background nutrient sources, the
computations presented in this paper are two-dimensional. These two-dimensional
simulations provide insight into this complex, coupled system and should be used as
a starting point to distinguish among hypotheses and guide further investigation.

2. Mathematical model and numerical implementation
Because a goal of this model is to investigate effects of flexibility of diatom chains

on nutrient acquisition, we choose an immersed boundary formulation (Peskin 2002;
Mittal & Iaccarino 2005) that can readily capture the dynamic coupling of elastic
structures with a viscous, incompressible fluid. The coupled system consisting of the
fluid, the diatom chains and the nutrient is governed by the following equations in a
rectangular periodic domain Ω:

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + μ�u + f (x, t) + g(x, t), (2.1)

∇ · u = 0, (2.2)

f (x, t) =

∫
Γ

F(r, t)δ(x − X(r, t)) dr, (2.3)
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∂ X(r, t)

∂t
=

∫
Ω

u(x, t)δ(x − X(r, t)) dx, (2.4)

∂C

∂t
+ u · ∇C = D�C − R(x, C) C + S(x). (2.5)

Equations (2.1) and (2.2) are the incompressible Navier–Stokes equations, where
u(x, t) is the fluid velocity, p(x, t) is the pressure, f (x, t) is the force per unit volume
exerted on the fluid by diatoms, g(x, t) is an external force that creates a background
flow, ρ is fluid density and μ is dynamic viscosity.

In our model the diatom chains are modelled as neutrally buoyant, elastic circles
connected by filaments. The configuration of these immersed chains is defined by
X(r, t), where r is a Lagrangian label and t is time. The force density f on the fluid
domain in (2.3) is a delta-function layer whose source is the immersed chain Γ . The
elastic forces F(r, t) generated along the passive diatom chain result by deformation
from its equilibrium shape.

Equation (2.5) describes the diffusion, advection and reaction of nutrient
concentration C(x, t). Here D is its molecular diffusivity; R(x, C) is the consumption
rate; and S(x) is a source. For simplicity, we assume that uptake by diatoms follows
Michaelis–Menten kinetics, i.e. in the absence of spatial dependence

dC

dt
=

Vmax

C + Km

C, (2.6)

where Vmax is the maximum uptake rate and Km is the half-saturation constant. We
remark that while silicate uptake by diatoms has been shown to generally conform
to Michaelis–Menten kinetics (Paasche 1973), more recent experiments indicate that
non-saturable kinetics may occur for cells grown under silicon-replete conditions
(Thamatrakoln & Hildebrand 2008).

In our model, cells act as moving sinks of nutrient, and we include a reaction term
R(x, C) C. This is a localized function that is non-zero only at points distributed
within the cells. Since the diatom chains are represented by Lagrangian points that
move freely through the fluid domain, we use compactly supported smooth functions
to transmit uptake from diatom cells to the fluid domain. Consequently,

R(x, C) C =

Mc∑
p=1

∫
Ω

Vmax

Cp + Km

Cp δβ(x − X̂ p) dx, (2.7)

where Mc is the number of cells in the chain, X̂ p is the centre of the pth cell and

Cp = C(X̂ p, t) is the nutrient concentration in the centre of the pth cell. The support
β of the bump function δβ(x) depends on the radius of a cell and does not approach
zero as numerical parameters are refined. The reaction term (2.7) allows us to keep
track of the amount of nutrient taken up by each cell.

Diatom cell walls are permeated with tiny pores, that allow diffusion of nutrients
and waste products in and out of the cell (Round, Crawford & Mann 1990). In our
model nutrient may diffuse or be actively transported across the cell wall. However,
cells and connecting filaments are not permeable to flow.

A background shear flow is achieved in our model in two ways. First, two neutrally
buoyant, horizontal walls suspended within the fluid are moved in opposite directions
to create a linear shear (see figure 2). These walls are also treated as immersed
boundaries that generate forces due to stiff tether springs connecting material points
of the walls to tether points whose motions are specified (Dillon et al. 1996). The speed
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Figure 2. The two-dimensional flow field is created by the movement of the immersed
horizontal walls, discretized on two horizontal lines. In the absence of the diatom chain,
the flow would be a linear shear.

of these tether points is controlled to achieve a shear rate of G =0.5–1 s−1 (Karp-Boss
et al. 1996). The second method we use to generate shear is to include a forcing term
g(x, t) in the Navier–Stokes equation (2.1) to create a vortical background flow.

2.1. Representation of diatom chains

We focus on Thalassiosira species that form flexible chains. Cells in a chain are
joined by one or more threads extruded from a central, strutted process. As in all
diatoms, their cell walls are rigid, made of biogenic silica (Werner 1977; Tomas 1997).
Here, a diatom cell wall is modelled as a thin, neutrally buoyant band, which in the
discrete representation is a collection of points located on a circle. Adjacent points
on the circle are connected by linear springs. Also, to ensure that the shape of the
cell is preserved throughout the simulation, we include linear springs that connect
every second point on the circle. The stiffness constant of these springs making up
the cell is σC

S . The thread is modelled as a thin band connecting two circles. In the
discrete representation, the thread is a collection of points located on a curve, with
adjacent points connected by elastic linear springs. The end points of the curve are
also connected to the two circles by linear springs. The stiffness constant of these
springs making up the threads is σL

S . The threads are initially straight, but depending
on their flexibility, they change shape in time, as the diatom chain moves through the
domain. This flexibility is controlled by bending-resistant forces along the thread that
penalize departure from a straight configuration. The stiffness constant that dictates
bending rigidity of the thread is σL

B . Bending-resistant forces are also applied along
the cell wall with stiffness constant σC

B , but here the forces penalize deviation from
the circular configuration. Similar immersed boundary forces were used in Fauci &
McDonald (1994) to generate active bending motions of model flagella.

2.2. Numerical implementation

The continuum description of the governing equations of motion of the coupled
fluid–diatom–nutrient immersed boundary system in (2.1)–(2.5) naturally suggests a
time-stepping algorithm. At the beginning of each step we have the fluid velocity field
un, the locations of the immersed boundary points (walls and chains) Xn

l and the
nutrient concentration field Cn. To advance the system by one time step we

(i) compute the immersed boundary force density Fn
l ;

(ii) spread the force density from immersed boundary to grid to get f n
i,j ;
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(iii) solve the Navier–Stokes equations for un+1
i,j ;

(iv) move the immersed boundary at the interpolated fluid velocity to get Xn+1
l ;

(v) use the updated positions of the cells to compute the nutrient uptakes;
(vi) solve the advection–diffusion–reaction equation for Cn+1

i,j .
The fluid domain Ω = [0, Lx] × [0, Ly] is discretized, and the fluid variables are

defined on a uniform Eulerian grid. The Navier–Stokes equations are solved in step
(iii) above, using the projection method presented by Kim & Moin (1985). A second-
order, explicit Adams–Bashforth scheme for the convective term is used, along with
an implicit Crank–Nicolson treatment of the viscous terms.

The communication between Eulerian fluid quantities and Lagrangian immersed
boundary quantities, in steps (ii) and (iv) above, uses a discrete approximation to the
Dirac delta function. The same function is also used in modelling the sinks and sources
on the nutrient concentration field. The two-dimensional discrete delta function is the
product of two one-dimensional discrete delta functions Dβ(x) = dβ(x) dβ(y), where
β = β(h) is the radius of dβ , that depends upon the grid spacing h. We choose dβ with
β = 2h typically used in immersed boundary computations,

dβ(r) =

⎧⎪⎨
⎪⎩

1

2β

(
1 + cos

πr

β

)
if |r | < β,

0 if |r | � β.

(2.8)

To solve the nutrient transport equation (2.5) in step (vi) above, we use an implicit
Crank–Nicolson scheme, with explicit treatment of the source and uptake terms.
Uptake of nutrient by the cells replaces the function δβ(x) appearing in (2.7) by the
discrete approximation Dβ(x), but here the support β is a physical parameter that
does not depend on h, but on the radius of the cell, and is chosen so that the bump
function δβ covers about 75 % of the interior of the cell. Therefore, the reaction term
R(x, C) C for the pth cell is discretized as

Rn
p =

∑
i,j

Vmax

Cn
p + Km

Cn
p Dβ

(
xi,j − X̂n

p

)
h2 (2.9)

and gives the nutrient uptake rate by that cell in one time step. Throughout a
simulation the uptake Rp for each cell is calculated at every time step n and is
accumulated to give the total uptake of

∑
n �tRn

p .
Neumann boundary conditions for the nutrient concentration at the top and bottom

walls are used when immersed boundary walls drive an unsteady shear flow, along
with periodic boundary conditions at the sides. In other simulations, with no walls,
we choose periodic boundary conditions for the nutrient concentration.

In Musielak (2007) we have presented convergence studies that demonstrate that
our numerical solver has the desired accuracy; i.e. it is second order in both space and
time in the absence of the immersed boundaries and first order when the immersed
bodies are present.

To complete the description of our model, we have to specify the magnitudes
of spring stiffness constants used in our simulations. As a starting point, our
model assumes that cell walls are rigid everywhere, although limited data suggest
that mechanical properties may not be uniform across the frustule (Almqvist et al.
2001). We are not aware of any measurements of elasticity of chains that we could
incorporate in our models. Constants that keep all the circles in a chain rigid
(deformations within 1 %) are found to be σC

B =10−5 g cm s−2 and σC
S = 200 g cm−1 s−2.
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Parameter Numerical value

Time step 	t = 0.00015625 s
In case of linear shear:

Fluid domain size Lx × Ly = 0.16 × 0.08 cm
Grid size N × M = 256 × 128

Nutrient domain size LN
x × LN

y = 0.16 × 0.06 cm
Grid size N × P = 256 × 97

In case of vortical flow:
Fluid/nutrient domain size Lx × Ly = 0.4 × 0.4 cm

Grid size N × M = 256 × 256

Stiffness constants on circles:
Stretching σC

S = 200 g cm−1 s−2

Bending σC
B = 10−5 g cm s−2

Stiffness constants on connecting bands:
Stretching σL

S = 90 g cm−1 s−2

Bending σL
B = 10−7–10−4 g cm s−2

Table 1. Numerical parameters used in our model.

The bands that connect the cells may be rigid or flexible but should be nearly
inextensible. We find that σL

S = 90 g cm−1 s−2 keeps the chain within 2 % of its resting
length (Musielak 2007). Finally, flexibility of the chains is controlled by the bending
stiffness constant on the connecting bands, which we vary from σL

B = 10−7 g cm s−2 to
σL

B = 10−4 g cm s−2. Other numerical parameters and all stiffness constants are shown
in table 1.

Flow parameters in the model were set to represent expected values of shear rate
and steadiness in the upper mixed layer in the ocean. The steadiness of the shear
can be estimated from the Kolmogorov time scale of the smallest velocity fluctuation
associated with dissipating Kolmogorov-scale eddies in the ocean (Tennekes & Lumley
1972; Karp-Boss & Jumars 1998),

τ = 2π

(
ν

ε

)1/2

, (2.10)

where ε is the kinetic energy dissipation rate and ν is the kinematic viscosity. Oceanic
values of the kinetic energy dissipation rate range from about 10−6 cm2 s−3 in the
deep ocean to 103 cm2 s−3 in regions of strong turbulence (e.g. the surf zone) (Thorpe
2007). The time scales of the smallest velocity fluctuations of flow in the ocean range
from about 6 to 200 s. We can determine the time scale for a given shear rate G using
the fact that the energy dissipation rate ε is proportional to the shear of the turbulent
velocity field, i.e.

ε ≈ ν

(
∂u

∂x

)2

, (2.11)

which gives

G ≈
( ε

ν

)1/2

. (2.12)

For the measured values of energy dissipation rates, ε = 2.5×10−3 cm2 s−3 to ε = 1.0 ×
10−2 cm2 s−3, the expected shear rate is G =0.5–1 s−1 (Karp-Boss et al. 1996). For
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Characteristic quantity Symbol Value

Characteristic length (cell radius)
In linear shear L 3.0 × 10−3 cm

In vortical flow 6.5 × 10−3 cm

Characteristic velocity (maximum velocity)
In linear shear U 1.5 × 10−2 to 3.0 × 10−2 cm s−1

In vortical flow 6.5 × 10−2 cm s−1

Fluid density ρ 1 g cm−3

Fluid viscosity μ 10−2 g cm−1 s−1

Diffusivity D 10−5 cm2 s−1

Kinetic energy dissipation ε 2.5 × 10−3 to 1.0 × 10−2 cm2 s−3

Shear rate G 0.5–1.0 s−1

Maximum uptake rate Vmax 0.1395 nmol cm−3 s−1

Half-saturation constant Km 2.27 nmol cm−3

Reynolds number Re 4.5 × 10−3 − 4.2 × 10−2

Péclet number Pe 4.5–42
Kolmogorov time scale τ 6–13 s

Table 2. Characteristic physical parameters governing diatom–nutrient system. Magnitudes of
Vmax,Km from Martin-Jézéquel, Hildebrand & Brzezinski (2000) are given for silicon uptake
by diatoms.

that shear rate, the time scale of the smallest turbulent fluctuations is of the order of
6–13 s, and flow can be considered steady over shorter periods.

To keep our simulations consistent with the above scales, we move the walls of our
model with speeds that create a shear rate G = 0.5–1 s−1, and we change direction of
their movement every 6–13 s. In case of the vortical background flow generated by
the force g(x, t) we shift the position of the vortices every 6–13 s to stay consistent
with the time scale of the smallest velocity fluctuations. All the characteristic physical
quantities are listed in table 2.

3. Numerical results
3.1. Nutrient uptakes

In all the simulations with shear flow in a channel, each cell in a chain has a 30 μm
radius, and connections between cells are 70 μm long. The top and bottom walls are
moved in opposite directions at constant velocity.

We first consider the case in which the spatial concentration of nutrient is initially
uniform, and we keep track of nutrient uptakes by cells in chains of different
flexibilities. We start with the top wall moving to the right and the bottom wall
moving to the left, for 8 s. Both walls are then stopped for 1 s, after which the
direction of their movement is reversed. This oscillating motion of walls is continued
for the rest of the simulation. Cells in the flexible chain stay close together most of the
time, and the chain rotates slower. The stiffer chain, on the other hand, rotates more
rapidly, and cells stay apart from each other, thus maintaining larger effective size
(figure 3). In this situation, under nutrient-replete conditions, the difference in nutrient
consumption between chains of different flexibilities is very small. At the end of the
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Figure 3. Evolution of nutrient concentration and position of diatom chains in an oscillating
shear flow. The chain in bottom frames is more flexible than the chain in top frames.

simulation, the uptake by the stiff chain is larger by less than 0.05 %. Differences in
uptake between solitary cells and cells arranged in chains are also insignificant.

One can estimate from the first three snapshots in figure 3 that the period of half
rotation of the stiffer chain is approximately 10 s. This is about half of the period
predicted by Jeffery’s theory for a rigid ellipsoid with axis ratio ra = 7.5 (Jeffery
1922), which is the length of the straight chain divided by the diameter of a cell. Of
course, Jeffery’s theory is not directly applicable, since here the fluid dynamics is two-
dimensional, and the chain is not a rigid ellipsoid. Periods of rotation of Thalassiosira
measured by Karp-Boss & Jumars (1998) in a steady shear flow (G = 0.5−1 s−1) were
0.3–0.8 times those predicted by Jeffery’s theory.

We next consider zero initial distribution of nutrient, with patches of it appearing
randomly in the channel throughout the simulation. We run a set of experiments on
chains of three, four and five cells, with varying flexibility. Initially chains are placed



410 M. M. Musielak, L. Karp-Boss, P. A. Jumars and L. J. Fauci

Stiffness

= 5 × 10–5g cm s–2L
Bσ

Time 1 s

3 sTime 9 s 19 s 24 s

0.03 0.13 0.03 0.13 0.03 0.13 0.03 0.13

8 s 24 s

0 0.05 0.10 0.15

1.0

0.5

0

1.0

0.5

0

0 0.05 0.10 0.15 0 0.05 0.10 0.15

= 5 × 10–7g cm s–2L
Bσ

= 10–5g cm s–2L
Bσ

= 10–6g cm s–2L
Bσ

= 10–7 g cm s–2L
Bσ

Figure 4. Evolution of nutrient concentration and position of diatom chains in an oscillating
shear flow. The flexibility of chains increases from top to bottom in the first five set of frames.
The last three frames show snapshots of solitary cells immersed in the same flow.

in the middle of the channel at a nearly horizontal position. The walls are moved in
opposite directions, and stop every 6–7 s for 1–2 s, and then change directions. This
oscillating shear flow is consistent with Kolmogorov time scales in the ocean. Nutrient
patches appear every second in 10 random places throughout the channel, and the
sequence is the same for each set of simulations with chains of equal length (figure 4).
We also perform simulations with solitary cells, to determine whether there is any
advantage for cells to stay connected in a chain.

To quantify the relation between nutrient uptake and flexibility of chains, we
calculate the differences in nutrient uptakes per cell between every chain of a given
flexibility, as a function of time, relative to the consumption by the most flexible chain
(σL

B = 10−7 g cm s−2). The results suggest that nutrient uptake per cell increases with
increasing stiffness of the chain (figure 5a). The difference in uptake between the most
flexible and the stiffest chain of three cells reaches 9%. Similar results were seen in
experiments with chains of four and five cells.

In the same way we compare the uptake per cell by chains to consumption by
solitary cells. The differences for chains of three cells relative to the uptake by solitary
cells are shown in figure 5(b) and for chains of five cells in figure 6. From these, and
from similar results with chains of four, it appears that cells arranged in stiffer chains
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chain (σL

B = 10−7 g cm s−2), relative to the uptake by most flexible chain. (b) Differences in
uptakes by chains of three cells and solitary cells, relative to the uptake by solitary cells.
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Figure 6. Differences in uptakes by chains of five cells and solitary cells, relative to the
uptake by solitary cells.

are able to consume more nutrient in these flows than cells that are not arranged in
chains.

In order to further investigate the relation between patch distributions and uptake
differences between chains of varying flexibility, we performed a set of experiments
in which the spatial and temporal distributions of nutrient sources were varied
systematically, considering only chains of five cells. Using the previous set-up as our
baseline (10 patches every second), we first keep the number of patches constant
but decrease the frequency with which they appear in the channel, down to 10
patches every 2 and 4 s. Next, we keep the frequency constant but double and halve
the number of patches that appear in the channel every second. The differences in
uptakes between a given chain and the most flexible chain with the same nutrient
patch history are normalized by the uptake by the most flexible chain. These ratios
are presented in table 3.

When twice the number of patches are introduced into the channel, the differences
in uptake get significantly smaller, e.g. from 6.7 % down to 1.6 % for the stiffest chain.
Note that doubling the number of patches brings the results closer to nutrient-replete
conditions, where we measured very small differences in uptake. Cutting the frequency
of patch introduction in half, from 1 to 2 s, slightly increases differences in uptake.
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σL
B (g cm s−2) 1 s 2 s 4 s 5 patches 20 patches

5 × 10−5 6.7 8.1 8.6 5.8 1.6
10−5 5.6 7.4 5.2 3.7 1.3
10−6 4.7 5.3 3.3 4.4 0.7

5 × 10−7 2.0 3.8 1.0 3.1 −0.6

Table 3. Differences in nutrient uptake (in per cent), relative to uptake by chains with
σL

B = 10−7g cm s−2, calculated at the end of simulations. Results in the first column (1 s)
correspond to figure 6. The second and third columns correspond to 10 patches of nutrient
introduced into the channel every 2 and 4 s, respectively. The last two columns show results
from simulations in which 5 and 20 patches of nutrient are introduced every second.

But decreasing frequency even more does not produce even larger differences. In all
simulations, it is the stiffest chain that enjoys the largest nutrient uptake. Cells in
flexible chains tend to stay close together, and they also rotate slower. In stiffer chains,
on the other hand, cells stay apart from each other, rotate more rapidly and cover
more territory, thereby increasing chances of encountering more nutrient patches.

3.2. Nutrient fluxes

3.2.1. Diffusive boundary layer and Sherwood number

We return to the study of the relation between flexibility of chains and nutrient
acquisition under replete nutrients. Instead of measuring nutrient uptakes we
concentrate on nutrient fluxes and examine the effect of fluid motion on nutrient flux.
To quantify enhancement of fluxes towards the cell due to advection, we calculate the
Sherwood number. It indicates how many times more flux occurs across the surface
of a cell in the presence of fluid motion than in its absence and is used to study
effects of different processes on convective and diffusive mass transport. Simulations
that keep track of fluid velocity fields and chemical fields allow computation of local
and time-dependent Sherwood numbers (Kiørboe, Ploug & Thygesen 2001; Kleis &
Rivera-Solorio 2003; Tada & Tarbell 2004; Li, Deen & Kuipers 2005).

In the absence of fluid motion, the concentration distribution of a nutrient C about
a planktonic cell is given by the diffusion equation. In an idealized situation of a
spherical organism sitting motionless in a motionless ocean, diffusion is radial. In two
dimensions the solution of the steady-state diffusion equation is

C(r) = A ln r + B. (3.1)

If the concentration at the cell surface, i.e. at r = R, is C0, and the concentration at
the far-field r = R∞ is C∞, then (3.1) becomes

C(r) =
C∞ − C0

ln R∞
R

ln
r

R∞
+ C∞. (3.2)

When uptake capacity of the cell exceeds diffusional supply rate, there exists a
nutrient-depleted region in the vicinity of the cell. This region is called ‘the diffusive
boundary layer’ (DBL) and is commonly defined as the region in which the difference
between C and C0 is less than 90 % of (C∞ − C0) (Karp-Boss et al. 1996). The size of
the DBL will depend on both R and R∞, and in the idealized situation it will extend
to r = (R/R∞)0.1 R∞ away from the cell centre. In shear flow, the boundary layer will
be distorted, and the concentration gradients will steepen in certain regions.
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Figure 7. Nutrient concentration distribution and the velocity field after 30 s.

The Sherwood number for a cylindrical cell is given by

Sh =

−
∫ 2π

0

dC

dr
R dθ∫ 2π

0

(C0 − C∞)

ln R∞
R

dθ

=

−R ln
R∞

R

∫ 2π

0

dC

dr
dθ

2π(C0 − C∞)
. (3.3)

Notice that in the case of a cylindrical cell in a stagnant fluid Sh = 1, and as the
thickness of the DBL decreases due to flow in the vicinity of the cell, the Sherwood
number increases.

To ensure a well-defined far-field concentration C∞, used in calculating the
Sherwood number, we enlarge our domain and create the background flow not with
the walls used in previous experiments but by applying the following forcing term in
the Navier–Stokes equations:

g(x, t) =

(
ρ a2 sin

(
2π

Lx

x − sx

)
cos

(
2π

Lx

x − sx

)
+ 2aμ sin

(
2π

Lx

x − sx

)
cos

(
2π

Ly

y − sy

)
,

ρ a2 sin

(
2π

Ly

y − sy

)
cos

(
2π

Ly

y − sy

)
− 2aμ cos

(
2π

Lx

x − sx

)
sin

(
2π

Ly

y − sy

))
,

where Lx × Ly is the size of the domain. The magnitude and sign of the parameter
a determine the strength and direction of the flow, and parameters sx, sy are used to
shift positions of vortices.

The boundary conditions for nutrient concentration are periodic in all directions;
the initial distribution is uniform; and the domain is big enough (relative to the cell
size) that the uptake of the cells cannot influence the far-field C∞ in the time under
consideration. Our domain is chosen to be 0.4 × 0.4 cm, to be consistent with the
length scale of dissipative eddies in the ocean (Jumars et al. 2009), making the vortices
0.2 cm in diameter. Each cell in our simulations has the radius of 65 μm.

3.2.2. Solitary cell

Before studying the effects of fluid motion on nutrient fluxes for chains, we first
examine the behaviour of the Sherwood number for a single cell. We perform two
experiments. First we put a single cell at a stagnation point in the middle of the
domain and impose vortical background flow (figure 7). We expect that the cell will
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Figure 9. Snapshots of the nutrient concentration distribution, the position of the cell and
the velocity field throughout the simulation.

experience a large enhancement of flux because of the oncoming flow. Due to the
flow, the DBL around the cell is distorted, and concentration gradients steepen in
certain regions, which is reflected in the local Sherwood number (figure 8b). In the
areas of oncoming flow, the local Sherwood number increases, and where the DBL
thickens the local Sherwood number decreases. The overall Sherwood number for
the cell is initially large because the difference between C∞ and C0 is small. That
behaviour of Sh was also observed by Kleis & Rivera-Solorio (2003) in their study of
unsteady mass transfer from a sphere in a non-uniform concentration distribution. In
our simulation Sh quickly goes down to the value of approximately 3.8 (figure 8a).

In the second experiment, we again put a single cell in the middle of the domain
and impose the vortical background flow, but after 14 s we change the position of
the vortices (sx = sy = π/4), so that the cell starts moving with the flow (figure 9).
While the cell stays at the stagnation point the Sherwood number is about 3.8, but
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Figure 10. Evolution in time of the overall Sherwood number for the cell.

as the cell starts moving with the fluid the Sherwood number decreases and oscillates
around the value 2.7 (figure 10). Peaks in that oscillation occur when the cell gets out
of a turn, and troughs occur when the cell is just about to enter a turn. As the cell
approaches the turn it slows (speed ≈ 0.044 cm s−1), and the DBL thickens in most
regions around it, thus decreasing the flux of nutrients towards the cell. As the cell
gets out of a turn, it accelerates (speed ≈ 0.061 cm s−1), and the DBL is sheared by
the flow, which increases the Sherwood number.

The dimensionless Péclet number of a flow is the ratio of advective transport to
diffusive transport of solutes through the fluid. Asymptotic solutions for mass transfer
to spheres in steady, linear shear were derived for very large and very small Péclet
numbers (see Karp-Boss et al. 1996 and the references therein). These asymptotic
solutions provide the lower and upper bounds on expected values for Sh. For a
cell in any pure straining motion and Pe � 1, Sh ≈ 1 + 0.36Pe1/2, and for Pe � 1,
Sh ≈ 0.9Pe1/3. When both rotation and strain act and Pe �1, Sh ≈ 1 + 0.34Pe1/2,
while for Pe gg 1, Sh ≈ 0.67Pe1/3. In our tests on a single cell Pe ≈ 40. Lower and
upper bounds for Sh when 0.01 <Pe < 100 are 1.036 and 4.18, respectively, for a
pure straining motion and 1.034 and 3.11, respectively, when rotation is present. Our
results fall within those bounds, since Sh ≈ 3.8 when the cell stays at the stagnation
point and Sh ≈ 2.7 when it moves with the flow. It must be noted, however, that
the relationships for Sh and Pe reviewed in Karp-Boss et al. (1996) are for spheres
in steady and statistically steady shear flows, and this is not the case in our two-
dimensional simulations.

3.2.3. Chains of cells

We examine effects of fluid flow on Sherwood numbers for cells in chains of
different flexibilities. We start with a stiff chain (σL

B = 10−4 g cm s−2) of three cells. It
is placed vertically above the centre of the domain, and the background vortical flow
is imposed. The position of vortices is shifted (by sx = sy = π/4) every 10 s, to stay
consistent with Kolmogorov time scale of the smallest velocity fluctuations of flow in
the ocean. In the first few seconds the chain is pushed by the flow to the centre of the
domain, a stagnation point. The flow coming symmetrically from above and below
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Figure 11. Snapshots of the nutrient concentration distribution, the position of the cell and
the velocity field throughout the simulation. Stiffness of the chain is σL

B = 10−4 g cm s−2

keeps it in place, and since the chain is stiff it resists bending. As the positions of
vortices shift, the chain begins to move with the flow and stays fairly straight through
most of the simulation (figure 11).

The Sherwood number Sh is large initially, since the difference between C∞ and C0

that appears in the denominator (see (3.3)) is initially small. With time, Sh for each
cell decreases to values between 1.5 and 2 and is larger for the two end cells (cells 1
and 3). It means that cells on the exterior of the chain enjoy larger enhancement of
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Figure 12. Evolution in time of the Sherwood number for each cell in (a) stiff and (b) flexible
chains of three cells. The Sherwood number is initially large, since the difference between C∞
and C0 is initially small.

flux due to flow than the cell in the middle (figure 12a). We remark that consistent
results were found for chains moving in unsteady shear, presented in the previous
section. When we examined nutrient uptake by cells within chains in patchy nutrient
environments, throughout simulations at least one of the exterior cells often was
enjoying larger nutrient uptake than the other cells in the chain.

We repeat the same experiment with a flexible chain (σL
B = 10−7 g cm s−2) of three

cells. Just as with the stiff chain, in the first few seconds the flexible chain is pushed
by the flow to the centre of the domain, a stagnation point. Since the chain is very
flexible it does not resist the flow coming from above and below, and it bends easily.
As the positions of vortices shift, the chain starts moving with the flow, and the
cells stay close together throughout the simulation. As with previous experiments, the
Sherwood number (figure 12b) is large initially, since the difference between C∞ and
C0 is initially small. As time goes by, Sh for each cell decreases to values between
1 and 2. Similar to the stiff chain, Sh for exterior cells is larger than Sh for the
cell in the middle, as long as the cells stay in an approximately straight line, even
though they are very close together (up to about t = 30 s). After t = 30 s the shape
of the chain changes, from straight to triangular, and Sh for exterior cells decreases
to approximately the same value as for the middle cell. Between the 20th and the
30th second of the simulation, Sh for each cell oscillates noticeably, a behaviour we
also saw for a single cell. Here the reason for oscillation is similar. At those times
the chain moves on the outside edge of an eddy, and the values of Sh change as the
chain goes in and out of turns. After t = 30 s positions of the vortices shift, and the
chain changes shape, becomes triangular and moves with the flow close to the centre
of an eddy.

It is worth noticing that Sherwood numbers for cells in the stiff chain are larger
than Sherwood numbers for corresponding cells in the flexible chain. Computations
with chains of four or five cells also exhibited increase of Sherwood numbers with
chain stiffness. Flexible chains bend, and the cells stay close together, thus decreasing
the flux of nutrients to the interior parts of the squeezed or twisted chain.

4. Discussion
Chain formation is common among diatoms. Possible functions of chain formation

are to improve nutrient supply, provide protection from grazing, alter sinking
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behaviour and improve fertilization (Fryxell & Miller 1978; Sournia 1982). In the
absence of data from computational, laboratory or field studies, understanding of
these potential functions remains very rudimentary. Interactions of chains with
the flow environment will affect any of these functions. Here we have presented
a mathematical model, based on the immersed boundary method, for studying the
behaviour of diatom chains in different flow regimes and the consequential delivery
and uptake of nutrients. This coupled mechanical system captures the interaction of
diatom cells, viscous, incompressible fluid and nutrient fields. The model examines
unsteady flows and captures the flexibility of diatom chains, features that have not
been included in previous models (e.g. Pahlow et al. 1997).

In this study we considered two types of distributions of nutrient, one in which
initial nutrient concentration is uniform and another in which nutrient is introduced
into the medium through point sources randomly distributed in space and time. We
calculated nutrient uptake by cells and nutrient fluxes towards the cells, for solitary
cells and chains of varying flexibilities. Results of numerical experiments suggest that
in an oscillating flow, circular cells arranged in stiff chains consume more nutrients
(per cell) than solitary cells. Pahlow et al. (1997) used a diffusion–advection model to
compare the transport of nutrient to solitary cells and compact chains in a simple
shear flow. They concluded that solitary cells will always experience increased nutrient
supply compared to cells of the same shape that form chains. In their model, however,
chains comprised compact cells and were modelled as prolate spheroids. Many chain-
forming diatoms, however, have large gaps between cells. Our chain model of a
series of spheres held by elastic, linear springs provides a realistic representation of
a diatom chain. There have been no laboratory studies that compared uptake of
nutrients between chains and solitary cells.

An intriguing result is the effect of chain rigidity on nutrient fluxes. Under replete
conditions there is no significant difference in uptake by stiff and flexible chains, but
in the patchy nutrient environment stiff chains experience an enhanced flux compared
to more flexible chains of the same size and number of cells. This result may be
explained by the fact that flexible chains bend more and don’t resist the flow much.
Stiff chains show higher resistance to flow; they bend less, maintain larger effective
size and thus cover more territory and are likely to encounter a greater number of
random sources. All these factors increase the nutrient concentration gradients around
each cell and increase the nutrient uptake. Observations of the behaviour of stiff and
flexible diatom chains in a simple shear flow qualitatively agree with the bending
behaviour of flexible chains observed in our model (Karp-Boss & Jumars 1998).

This simplified two-dimensional model provides the first insights into the potential
role of mechanical properties of chains and raises interesting questions regarding
the evolution of diatoms. Silica frustules have the obvious benefit as a deterrent of
herbivores, but here we suggest a different benefit, that of enhanced nutrient flux due
to flexural stiffness. The numerical experiments further suggest that the cells on the
exterior of chains experience larger enhancement of nutrient flux due to flow than
the cells on the interior. This result may be explained by their smaller number of
neighbours, which exposes larger parts of the cell to flow and shearing of the DBL,
and also by accentuated motion, which further increases concentration gradients at
the cell surface.

There is a great deal of variation in the local Sherwood number. It depends on the
shape of the whole chain and the position of the cell relative to the flow. The local
Sherwood number is largest in areas in which the velocity field is nearly tangential
to the cell surface, since that is where the DBL is sheared most by the flow. The
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local Sherwood number is lowest in areas of cell surface closest to other cells, where
concentration gradients are the smallest. It is a common assumption that cells within
a chain are individual units, and there is no transport of material between cells. In
some species, however, cells are connected by hollow siliceous structures. It has been
suggested that these structures may contain cytoplasm, so nutrients could potentially
be delivered from end cells of a chain to its centre, but so far there has been no
evidence for the presence of cytoplasm in linkages between cells.

In our model, diatom chains are assumed to be neutrally buoyant. However in
reality they are often denser than water (generally >1.1 g cm−3), largely because their
frustules are made of silica. This ballasting causes them to sink at a rate of about 1 m
per day (Reynolds 2006), a behaviour that can influence nutrient supply towards cells.
Diatoms can also be positively buoyant, with ascent speeds up to 7–8 mh−1 (Moore
& Villareal 1996). Thus, we want to extend our computational framework to non-
neutrally buoyant immersed boundaries. To do so, we must extend the fluid solver
to include a transport equation for fluid density. It can be achieved by following the
work of Zhu & Peskin (2002), who studied the flapping of a filament in a flowing soap
film, using an extension of the immersed boundary method that captures variable
density.

Based on the analysis by Lazier & Mann (1989), we assumed that at the length scales
of diatoms, the fluid flow is experienced as a simple shear flow. Their argument came
from analysis of a characteristic profile of velocity in one dimension, where viscosity
produces a roughly linear velocity gradient over the scale of 1 mm. Thus, in our model,
we used immersed walls to create linear shear flows, but we varied direction of their
movement to account for velocity fluctuations described by Kolmogorov scales. As
understanding of turbulent flows grows, however, it seems that flow to which diatom
cells are exposed is better described as a twisting maze of vortex worms rather than
a field of steady shear and constant vorticity. Vortices are organized fluid motions
rather than random fluctuations, and vortex stirring can bring reactants together in a
way that random fluctuations cannot (Crimaldi, Hartford & Weiss 2006). Therefore,
to examine effects of vorticity gradients and time-varying vorticity on phytoplankton
cells, we plan to incorporate in our model various vorticity fields, such as Burgers
vortex (Davidson 2004). However, since in two dimensions vortex stretching cannot
occur and vorticity is limited to the axis orthogonal to the two dimensions, we must
follow the presented model into three dimensions. The behaviour of chains in three
dimensions is obviously more complex than that in two dimensions. They can rotate
in more than one dimension. There are gaps between cells through which both fluid
and nutrient can flow, which in the two-dimensional model are limited. This kind
of flow will have effect on nutrient transport towards the cells, since shearing of the
DBL may occur also between cells, which in turn will affect concentration gradients
and the Sherwood number.

Numerical computations of the sort begun here appear to be an efficient way to
identify phenomena of potential interest that can then be pursued experimentally.
Production of vortices that have diameters of a few centimetre in the laboratory is
feasible for experimental purposes once testable alternative hypotheses, suggested by
numerical results, have been framed. Hunting phenomena and identifying mechanisms
in laboratory or field observations would be a much more daunting task.
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